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SURVEY

At the St. Louis meeting of the American Physical Society, on March

25-28, we are presenting a review of recent work on the energy bands of solids,

using the augmented plane wave method. I am giving a half-hour invited paper,

followed by contributed papers by Mattheiss, Wood, Switendick, and Pratt, all

on topics which have been recently reported in these Quarterly Progress Re-

ports. There are several points which I shall emphasize in my talk, as well

as sketching the main ideas of the APW method. One of these points is that

the APW method is not tied to the use of a potential which is constant between

the atomic spheres, as well as being spherically symmetrical within the spheres.

There is no complication involved in having an arbitrary potential in the space

between the spheres. All that has to be done is to expand in three-dimensional

Fourier series a function equal to the assumed potential between the spheres,

and zero within each sphere. The Fourier components of this expansion

immediately give contributions to the diagonal and non-diagonal matrix elements

of the Hamiltonian between the augmented plane waves, before solving the

secular problem, which carries through as usual. This was pointed out in the

first paper on the APW method, and has been emphasized particularly in still

unpublished work by P. M. Marcus and H. Schlosser (I am indebted to them

for pointing this out to me). Though we have not so far used such a Fourier

expansion, we are actively exploring its use, and shall expect to use it as soon

as we have decided what potential to assume.

A second point which I shall emphasize is that though the energy bands

in some metals are rather free-electron like, nevertheless this is not a general

situation, and it makes the use of the various pseudo-potential methods which

have been proposed very dubious in general. One can approach the problem by

considering the logarithmic derivatives of the radial solutions of Schr~dinger's

equation at the radius of the atomic spheres. If these logarithmic derivatives

happened to equal the logarithmic derivatives of the spherical Bessel functions

corresponding to free electrons whose energy equalled the actual energy of the
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problem, the solution of Schr5dinger's equation inside the sphere would join

smoothly onto a single plane wave outside the sphere. This would mean that a

plane wave solution in the regions between the spheres would not be scattered

by the atoms. In such a case one can show that the solution, for this energy,

is free-electron like as far as its energy is concerned, as well as having a

wave function which is a plane wave except within the spheres. This is the same

situation which, in the problem of scattering of a plane wave by an isolated atom,

leads to the Ramsauer effect, according to which certain atoms, particularly the

inert gas atoms, show practically a zero scattering cross section for slow

electrons. The point now is that the logarithmic derivatives for the crystal

potentials in such cases as sodium, magnesium, and aluminum have almost

exactly this property, leading to the free-electron-like behavior of the energy

bands in these cases. In most cases, however, we do not have this situation,

and the use of free electron solutions as a starting point is not at all justified.

In every case the APW method is applicable, but the only way to test the appli-

cability of pseudo-potential methods is to compare them with more accurate

solutions, such as the APW, and if the accurate solution is available, there is

no point in using the free-electron approximation.

A further point regarding the APW method is its applicability in many

cases where other methods are impossible or difficult. One of these, of course,

is the study of the transition series of elements. Another is the study of crystals

involving very heavy atoms, in which no particular difficulty arises when using

the APW method, as Pratt and his students have shown, but for which the OPW

method is rather difficult. For the study of spin-orbit interaction, the APW

method is particularly convenient, since the spin-orbit interaction Hamiltonian

is zero except where there is an external electric field, which means that if we

have the conventional potential used in the APW method, constant between atoms,

the Hamiltonian will vanish except within the spheres. Within these spheres,

since we have spherical symmetry, we can carry through the ordinary transfor-

mation reducing the spin-orbit interaction to an operator involving 9'L the

scalar product of spin and orbital angular momentum. Furthermore, the wave

function within the spheres is expanded in series of terms each with a fixed

angular momentum, so that it is easy to deal with the matrix elements. These

advantages have been pointed out in an unpublished memorandum by Larry

Johnson, working with Pratt.

I have included this sketch of my remarks at the meeting, since they

will not be published elsewhere. As for the new results to be reported, per-

haps the most striking are Mattheiss's calculations of energy bands for almost

the whole 3d transition series of elements, which he reports in the present

Quarterly Progress Report. These are still preliminary results, in that he has

so far determined energy bands only in a few directions, buL the programs are
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working so well that we can now turn out these energy bands very rapidly, and
it will not be long before much more complete information is available. It is
particularly interesting to check the validity of the rigid band model of the

transition elements, to see the gradual narrowing of the 3d bands as we go up

in the series, and to see the rapid descent of the 3d bands below the 4s and 4p
as we go from copper to zinc and gallium. This is the first time that it has been

possible to assemble on a common basis a set of energy band calculations for
these elements, including representatives of body- and face-centered cubic and

hexagonal structures. Wood's work on gallium fits onto this series, and is

entirely consistent with it. The case of gallium, however, is one of the most

complicated which we have yet encountered as far as the structure of the Fermi

surface is concerned, and it is by now clear that many further points in the

Brillouin zone will have to be calculated before the shape of the Fermi surface
is entirely clarified. Wood is proceeding with the calculation of these further

points.
In the two preceding Quarterly Progress Reports I have presented re-

sults on symmetry properties of a number of hexagonal and cubic space groups.

I conclude this series with some tetragonal and rhombohedral space groups, in
the present Quarterly Progress Report. In the next @uarterly Progress Re-

port, of July 15, 1963, I propose to give some discussion of double space groups,

and their relation to spin-orbit interaction.

The work on molecular calculations and molecular integrals has been

proceeding rapidly during the preceding quarter, as is shown by no less than

seven contributions to this Quarterly Progress Report, by Moskowitz, Sutcliffe,

Harrison, Ellis, Wright, Dahl, and Nielson and Woznick. Some of these deal

with specific molecules, but most of them are concerned with the calculation

of three- and four-center integrals, with mathematical techniques associated

with their calculation, and with packages of programs for the calculation of

molecular wave functions. Excellent progress is being made with this pro-

gramming, but there is still quite a way to go before we are ready to make

wholesale c,' culations of polyatomic molecules.

We have one addition to the group since the last Quarterly Progress

Report, Dr. J. P. Dahl, from the University of Copenhagen, who will be with
the group for approximately a year. Fred Quelle, who has been associated

with the group for several years, as a graduate student at Harvard as well as

being associated with the Lincoln Laboratory, has now completed his require-
ments for the doctor's degree at Harvard. He continues to be associated with

the Office of Naval Research. Roberts has received his degree since the last

Quarterly Progress Report, and has left to take a position at the Bell Telephone

Laboratories, Inc.
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Professor M. P. Barnett, who has been with us since 1958, has just

been appointed to a Readership in Information Processing at the Computer Unit

of the University of London, a position in which he will be a senior member in

one of the largest computer installations in the world. He will leave in

September' 1963 to take up his new post. He will leave a serious gap in our

group, and arrangements have not yet been made to fill his place, either as

Director of the Cooperative Computing Laboratory or as a scientific member

of the group. It is our intention, however, to continue the operation of the

Cooperative Computing Laboratory along its present lines, which have been so

soundly originated by Prof. Barnett, and to continue the work on molecular cal-

culation and molecular integrals. It is our hope that during the remaining

months of Prof. Barnett's term here, with the large group now working on the

programming problem for the polyatomic molecules, we shall be able to bring

this problem to a point where it provides usable methods for the quantitative

study of polyatomic molecules.

J. C. Slater
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ENERGY BANDS FOR THE IRON TRANSITION SERIES

L. F. Mattheiss

I. Introduction

Energy bands have been calculated for a majority of the elements in

the iron transition series using the augmented plane wave (APW) method~1 ' 2)

While these results are preliminary in nature and not in any sense complete,

they may be of some interest to experimentalists and theoreticians who are

concerned with the electronic structure of the transition series elements. The

present results represent energy bands for three different crystal structures,

with a variety of lattice constants. Despite the detailed differences that are

imposed by symmetry requirements and variations in lattice constants, the

results suggest some interesting and rather clear cut trends in the band

structure of these elements as one proceeds through the transition series.

These calculations lend some support to the rigid band model for the transition

series. They support the hope that systematic studies of the band structure of

the transition series elements can provide useful qualitative, and perhaps quanti-

tative, information concerning their electronic structure.

As in all calculations involving d electrons, the results are sensitive

to the choice of potentials. The crystal potentials used in these calculations

were all constructed in an analogous manner, and were approximated by a

superposition of atomic potentials. The method involves the use of Hartree-

Fock solutions to the corresponding atomic problem(3) ard the free electron
(4)exchange approximation . The details of this method for constructing

(5)approximate crystal potentials have been described earlier , though a brief

resume is presented in Section II of this paper, along with other information

pertaining to this present series of calculations. The energy bands along a

single line of symmetry in the appropriate Brillouin zone are presented in

Section III for A, Ti, V, Cr, Fe, Co, Ni, Cu, and Zn, while the last section

contains a brief discussion of these results.
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II. Description of the Calculations

In these calculations, the crystal potential has been approximated by a

superposition of atomic potentials. The coulomb and exchange contributions

to the crystal potential are treated separately. An approximate crystal coulomb

potential and charge density in a given atomic cell is obtained by expanding the

neutral atom coulomb potentials and charge densities of neighboring atoms about

the origin, using L6wdin's alpha function expansion (6), keeping only the I = 0
or spherically symmetric terms in these expansions. Using the free electron

exchange approximation, the exchange potential is proportional to the cube root

of the superimposed atomic charge densities. It is felt that by using this

superimposed charge density, the principal deficiency in the free electron ex-

change approximation is -compensated, namely that it falls off too rapidly at

large radii in atomic systems.

The potentials obtained by this method are generally rather flat near

the boundaries of the atomic cell, at least in the case of metals, so they are

readily approximated by a "muffin-tin" type potential, as required by the APW

method. The constant value of the potential outside the APW spheres is taken

as the average value of the potential in this region. This usually results in a

discontinuity in the potential at the sphere radius amounting to a few hundredths

of a Rydberg.

In the construction of approximate crystal potentials for transition

series elements, there is frequently some ambiguity in choosing the most

reasonable atomic configuration. This sort of difficulty can only be answered

satisfactorily by experimental information and/or self consistent energy band

calculations. For the present, we have been content to study the effect that

changing the atomic configuration has on the band structure. In addition, there

are magnetic effects which create additional complications in this series of

elements. For simplicity, all magnetic effects have been neglected in these

calculations, and the crystals have been assumed to be non-magnetic in

character.

The lattice constants which have been used in these calculations have

generally been the room temperature values as tabulated in Pearson's book,

A Handbook of Lattice Spacings and Structures of Metals and Alloys 7 }. The

exceptions are those for A and Zn. The lattice constant for A is the low temp-

erature value obtained by Dobbs and Jones(8). In the case of Zn, Harrison(9)

has extrapolated the room temperature lattice constants to low temperatures

since the results are expected to be sensitive to the choice of c/a ratio. For

purposes of comparison, his values have been used in these calculations.

Table 1 contains a summary of the elements considered in these calculations,

their structures, the values of the lattice constants, and the assumed atomic

configurations.
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Table I

In this table, we list the elements of the iron transition series, their structures,

the lattice constants used in this series of calculations (in atomic units), and the

assumed atomic configurations.

Element Structure a (au) c (au) Configuration

A fcc 10. 0346 (3s)(3p) 6

K

Ca

Sc

Ti hcp 5.5755 8.8503 (3d)3 (4s)1

V bcc 5. 7225 (3d) 4(4s)1

Cr bcc 5.4512 (3d) 5(4s)1

Mn

Fe bcc 5.4168 (3d)7 (4s)I

Co fcc 6. 6975 (3d)8 (4s)1

Ni fcc 6. 6590 (3d) 9 (4s) 1

Cu fcc 6. 8309 (3d)10 (4s)I

Zn hcp 5.0120 9.1453 (3d) 10 (4s) 2

III. Results

The principal results of these calculations are presented in Figure 1.

These results represent plots of energy as a function of wave vector along lines

of symmetry from the center to a boundary of the appropriate Brillouin zones.

For the face centered cubic structures (A, Co, Ni, and Cu), the bands are

plotted from F along the A direction to the point X, using the notation of

Bouckaert, Smoluchowski, and Wigner (0). In the body centered cubic structure

(V, Cr, and Fe), the bands are plotted from r along the adirection to the point

H. Finally, in the hexagonal close packed structure (Ti and Zn), they start at

r and proceed along the line T in the k = 0 plane which terminates at the point

K, one of the vertices of the hexagon (in the notation of Herring(1 1 )).

The energy is in Rydbergs and the wave vectors for the different

elements are drawn to scale for purposes of comparison. The horizontal

dashed lines represent rough estimates of the Fermi energy for each element.

For simplicity, some of the more highly excited bands have been omitted in

some cases, particularly in the face centered cubic structure, or in other

situations, they have been sketched in by dashed lines.
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ARGON TITANIUM VANADIUM CHROMIUM IRON
(fcc) (hcp) (bcc) ', (bcc) , (bcc)

1.0 7

E
(Rydbergs)

0.5

k (a.u.) 0.63 k (a.u.) 0.75 k (a.u.) 1.10 k (a.u.) 1.15 k (a.u.) 1.16

Figure 1

Energy bands for A, Ti, V, Cr, Fe, Co, Ni, Cu, and Zn as a function of

wave vector along a line of symmetry in the appropriate Brillouin zones.

For the face centered cubic structure, the bands are plotted from r along

b to the point X. For the body centered cubic structure, they are plotted
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COBALT NICKEL COPPER ZINC
(fcc) (fcc) (fcc) (hcp)

1.0 '

E
(Rydbergs) -- - - - -

0.5

k(a.u.) 0.94 k(a.u.) 0.94 k(a.u.) 0.92 k(a.u.) 0.84

Figure 1 (cont.)

from r along A to the point H. Finally, for the hexagonal close packed

structure, they are plotted from r along T to the point K. The energies

are in Rydbergs and the wave vectors are in atomic units.
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In Figure 2, it is shown what effect varying the atomic configuration

has on the band structure of a typical element, namely vanadium. The bands

to the right are the ones shown in Figure 1 for vanadium; the ones to the left

are those obtained from a potential which results from an atomic configuration

containing an additional 4s electron and one less 3d electron. In general, this

results in a narrowing of the 3d band and a decrease in the energy separation

between tihe top of the 3d band and the bottom of the 4s-4p bands.

IV. Discussion

In the simplified picture of the energy bands for the iron transition

series elements, one finds a narrow 3d band in the midst of a rather broad

4s-4p band. The width of the 3d band and especially its position relative to

the bottom of the 4s-4p band depend rather critically on the potential. Never-

theless, the results of Figure 1 exhibit a reasonably smooth variation from

element to element, especially for those substances having the same crystal

structure. This seems to lend some support to the rigid band model for the

transition series elements, an approximation which has been of considerable

value in understanding the electronic properties of these elements and their

alloys.

There is a gradual narrowing of the 3d band as one progresses through

the series. This effect was discussed by Slater in order to explain the
(12)occurrence of ferromagnetism in the latter part of the series . In going

from Cu to Zn, the 3d band suddenly drops about 0. 5 Rydberg below the bottom

of the 4s-4p bands, and its width decreases to less than 0. 1 Rydberg. As a

result, the energy bands for zinc are very free electron-like. For those ele-

ments where the 3d band falls in the middle of the 4s-4p bands, the inter-

actions between states having the same symmetry causes considerable modi-

fication to the free electron bands, though at points of symmetry, the effect

is sometimes small. The bands for Ti and Zn demonstrate this effect nicely.

The results of Figure 2 emphasize the uncertainty which is inherent

in any energy band calculation for a transition series element. These uncer-

tainties have been pointed out previously in the literature, particularly by
(13)Callaway . These difficulties can only be cleared up satisfactorily with the

aid of more detailed experimental information regarding the band structure of

these elements in addition to self consistent energy band calculations.

The results presented here are not complete enough to permit de-

tailed comparisons to be made with experiment or a discussion of the resulting

Fermi surfaces. However, there are some striking similarities between the

energy bands shown in Figure 1 and the results obtained by earlier calculations.

In particular, there is good qualitative agreement between the Cu results
(14) (15)shown on Figure 1 and the bands calculated by Segall and also by Burdick
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VANADIUM VANADIUM

(3d) 3 (4s)2? (3d) 4 (4s)'

1.0-

E
(Ryd bergs)

0.5

0
k 1.10 k 1.10

Figure 2

Energy bands for V using potentials obtained from two different atomic

configurations. The bands to the left resulted from a configuration of

(3d) 3 (4d) 2 , while those to the right involved a (3d) 4 (4s) Iconfiguration.
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Similarly, the results for Fe are in good agreement with the published results

of WoodP2 ). The agreement for A with the results of calculations by Knox and
(16) (5)Bassani is good, and has been described previously , though there are

differences in the ordering of levels. In the case of Cr, it is difficult to com-

pare the present results with those of earlier calculations by Asdente and

Friedel( 1 7 ) since they neglect the interactions between the 3d band and the

4s-4p bands. However, the present results do justify, to some extent, the

treatment of Cr by Lomer(1 8 ), who used the results of Wood's iron calculations

to discuss the energy bands in antiferromagnetic Cr.

In the case of Zn, the ordering of levels is identical with that obtained

by Harrison(9). This ordering differs from that obtained in earlier calculations

for hexagonal close packed metals by Herring and Hill for Be(19) and Falicov

for Mg( 2 0 ). This change in ordering might be due to the presence of an

occupied 3d band just below the 4s-4p bands. Finally, the results for Ti agree
(21)qualitatively with those obtained by Altmann and Bradley
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ENERGY BANDS IN GALLIUM

J. H. Wood

The figures shown in the last progress report should be disregarded

as they are considerably in error. We now believe that the structure of the

5-6 Fermi surface (which appears to be the important one experimentally)

resembles the corresponding free electron surface shown in figure 14(a) of

the paper by Reed and Marcus 1). The main modifications (which are going

to be considerable) to that surface are in the regions of the refledtion plane

perpendecular to the ka axis (in that figure) -- this is the region in which the

free electron surface allows an "exit'' from the zone, in the vicinity of the

vertices of the hexagon. We are currently concentrating our calculations in

that region of k-space in order to ascertain if an exit is still possible in this

region.

Some work has also been going into freeing the APW programs from

the muffin tin type potential. This type of potential is somewhat restrictive

whenever the volume of space outside the muffins becomes a sizeable fraction

of the total cell volume. We do not intend to immediately change over to this

for the case of gallium, even though some 60 percent of the cell volume is

outside the APW spheres and is being represented by a constant value for the

potential. It seems worthwhile to push the present calculations to a conclusion

to see if they will give us something sensible in the way of a Fermi surface

which would be of use to the experimental people.

We also hope to soon begin testing the program for the diamond type

,tructure.

Reference

1. W. A. Reed and J. A. Marcus, Phys. Rev. 126, 1298 (1962)
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SYMMETRY PROPERTIES IN THE SPACE GROUP

14
D 4 h (P4 2 / mnm)

John C. Slater

The space group D 14 (P4 2 /mnm), having the point group D4 h andTh p c r u 4h a4 d

the primitive tetragonal Bravais lattice, is found in the rutile structure,

occurring in TiO2 and similar compounds. The three fundamental vectors

•, , t of the primitive unit cell are given by- 1 = a- t2 a-, c k,
1 2 3 . .. . .= = ... ,

and the vectors b , b 2 , b of the reciprocal lattice are b =i/a, b. a,_• _•1 2' 3" 12

b 3 = k/c. The Brillouin zone, and the symmetry points in it, are given in

Fig. 1. The positions of the atoms in the rutile structure are as follows:

Titanium at the origin of the cell, and at the point for which x/ a, y/ a, z/ c

are 1/2,1/2,1/2.

Oxygen at -(uuO; u+l/2, 1/2-u, 1/2), where for TiO 2 the parameter u is

0.31.

The 16 operations of the point group D 4 h are X0 , X±I, X2, Y0 1

Y±1I Y2' X0, Xl, XZ, Y(,, Y' 1 1 YZ, defined by Eqs. (6) . . . (9),

Reference 1. That is, we have

Xq 4(r, ,z) =(r, + 2_q, z)"" N

Y q~br ý,z (r, -€+ 2•'q, z)

N

' (r ,z) = (r, + 21__q -z)

N

Y'r (r, z), r, -+ -, -z)(1
q N
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where N = 4. For the present purpose it is more convenient to express the

operations in rectangular coordinates. We then have

"X0 LP(x, y, z) = ý(x, Y, z) XbJ(x, y, z) = C(x, y, -z)

"4I Lp(x, y, z) = (-y, x. z) X'ý(x. y, z) = P(-y, x, -Z)
"X1 '(x. y, Z) = H(y. -x, z) X'1 4l(X, y. a) = '(y. -x. -z)

"X2 0(X Y, z) = W(-x, -y, z) X ?(x• y, z) = W(-x, -y, -z)

" "0y(x, Y, z) = C(x, -y, z) Y1O(x, y, Z) = 40(x, -y, -z)

YlP(X, y, z) = 4(y, x, z) YC(x, y, Z) = (y, x, -z)

"Y_+(x, y, zi = W(-y, -x, z) Y' 1 ý(x y, Z) = 4i(-y, -x, -z)

"Y zp(x, y, Z) = 4i(-x, y, z) Y P(x, y, z) = 4(-x, y, -z)
(2)

The multiplication table for the point group is as given in Eq. (5), Ref. 1,

namely

XqXp = Xq+p, XqYp = Y-q+p' YqXp = Yp+q, YqYp = X-q+p (3)

In this expression, if the subscript of the product function does not have one

of the allowed values 0, dl, 2, we are to add or subtract integral multiples

of 4 to secure a value within this range. In the space group 4we have noD4h, ehaen

non-primitive translation associated with operators with even subscripts, but

the non-primitive translation (-1+T'+r-)/ 2 associated with all operators with

odd subscripts.

The effect of the operators of Eq. (2) on a plane wave

exp Ziri [(h_++p )_+(h +p 2)h+(h3 +P3 )r,] , where the vector position - is given

by 9 1 + 71 t2 + ty, is given by Eq. (4) below:

X 04 = exp Ziri [ (hI+P 1 )9+(h 2 +p 2 )h+(h3 +p 3 )3 ]

Xl I = exp Zwri [(h 2 +p2 )ý-(hl+Pl)T1 +(h3+p 3 ) 3 ]

X_IlP = exp Zwri [ -(h 2 +p 2 )ý+(hl+pl)-+(h 3 +P 3 )K]

X 24 xexp Ziri [ -(h 1 +pl)-(h2 +p2 )h+(h3 +p3 )K]

Y*0  = exp Zii [i(hl+Pl)ý-(hp2)q+(h3+P3)ý ]

Y14' = exp Z-"'i [i(h2+p2)g+(hl+Pl)7÷(h3+P3) ]

YItP = exp Zi'i -(hZ+pz)ý-(hl+Pl)7.+(h3+P3) I

Y 2 = exp Ziri [-(hl+pl)ý+(h2 +p2 )h+(h3 +P 3 );.] (4)
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T Ar.
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Fig. I Brillouin zone and symmetry points for the
primitive tetragonal Bravais lattice
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For the primed operations, the sign of h 3 +P 3 is to be changed. An additional
factor exp Tri(h 1+p 1 +h2+p 2 +h 3 +P3 ) occurs for the operations with odd sub-

scripts in the space group, on account of the non-primitive translations. In
the multiplication table of the space group, there is an additional factor,
arising from the non-primitive translation, if the first operation in the pro-
duct has an odd subscript. There is no such factor if the first operation has
an even subscript. The factor is independent of which odd-subscript operator
we have, and is as follows, where we first enumerate the second operation,

then the factor:

X X, : e -2•ffiP 3X0 : 1 No:

XI e 2 lTi(p 2 +p 3 ) X : e 21Tip 2

X i: e Tri(pl+p 3 ) X, e Ziip 1

X 2 : e -zri(pl+p2 ) X : e-Zr i(p+p 2 +P 3 )

Y0 e-21iP2 Y : e-2 i(p 2 +p 3 )

Y: e 2Tri(p 1 +p 2 +p 3 ) Y1 : ez2ii(pl+p 2 )

Y-1 e2 iP3 Y-1I
Y 2 :e- 21iP 1 Y2: e- 2Ti(P, +P3) (5)

We now give in Tables 1 . . . 14 the matrix elements and
characters for the various symmetry directions, and in Table 15 the com-

patibility relations.
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Table 1

Matrix elements and characters at point r, pl = P2 = P3 = 0. Only the matrix

elements for the unprimed operators are tabulated. For the primed operators,

the elements are the same as for the unprimed for the representations w:ith

superscript +, and the negatives of these values for the representations with

superscript -.

X0 X1 X-1 X2 Y 1 Y-1 Y2
*1 1 1 1 1 1 1 1 1+

1-2  1 1 1 1 -i -I -i -Ir

3 +1 -1 -l 1 1 -l - 1 1
r 3
IF4  1 -1 -1 1 -l 1 1 -1

(F 5 )1 1  1 0 0 -1 1 0 0 -1

(F 5 )21 0 -41 1 0 0 1 -1 0

(r 5 )12 0 1 -1 0 0 1 -I 0

(F 5 )22 1 0 0 -1 -1 0 0 1

( 2 0 0 -2 0 0 0 0

Table 2

Matrix elements at points A, p 1 = p, P2 = P 3 = 0

xO YO • Y
X0 Y0 X0, 0-

A1  1 1 1 1

A2  1 -1 -1 1

A 3 1 - I 1 -1

64 1 1 -1 -1
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Table 3

Matrix elements at point X, boundary of zone along direction A. Here

pl =1/2, Pz = P3 -0.

X Y Y X ' X ' Y ' Y ' .
X 0  X 2  Y 0 2 0 2 00 Z o Y2

X1 1 1 1 1 1 1 1 1
X2 1 -l 1 - 1 1 - 1 1 -l

X 1 -1 -2 1 1 -1 -1 1

X3 X4 1 1 1 1 - 1 - 1 -1 -1

X 5 1 '-1 -1 1 - 1 1 1 -1 '

X6 1 -1 1 -1 - 1 -1 1

X7 1 1 -1 - 1 1 -1 -1
X8 1 1 -1 - 1 - 1 -1 1 1

Table 4

Matrix elements and characters for points A, P1 = p2 = 0, P 3 = p'

X0 X1 X-I X2 Y0 Y1 Y-I Y2

A 1 eTip e ip 1 1 e rip eTrip I

A 2  1 e i p el J ip 1 -1 I -ip - eeip -1

A 3  1 -e' rip -erip 1 1 -e' ip - e ip 1

A 4  1 -e' -eip 1 -1 eTrip e ip -I

(A 5 ) 1 1  1 0 0 -1 1 0 0 -1

(A 5 ) 21 0 -eTip erip 0 0 erip -e Iip 0

(A 5 )12 0 e 1rip -e rip 0 0 e rip -0Tip 0

(A 5 ) 2 2  1 0 0 -1 -1 0 0 1

X(A 5 ) 2 0 0 -2 0 0 0 0
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Table 5

Matrix elements and characters for point Z, boundary of zone along direction

A. Here p = P2 = 0, P3 = l/2.

O X- YO Y YY YY XYXX' Y Y'

-1 2 -1 -1

(Z l 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0

(Z)1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1

(Zi)12 0 -1 -1 0 0 -1 -1 0 1 0 0 1 1 0 0 1

(Z)d2 2  1 0 0 1 1 0 0 1 0 -1 -1 0 0 -1 -1 0

X (Z1 ) 2 0 0 2 2 0 0 2 0 0 0 0 0 0 0 0

(Zz)I1 1 0 0 1 -1 0 0 -1 0 1 1 0 0 -1 -1 0

- (Z 2 )2 1  0 1 1 0 0 -1 -1 0 1 0 0 1 -I 0 0 -1

(Z2)12 0 -1 -1 0 0 1 1 0 1 0 0 1 -1 0 0 -1

(Z2)22 1 0 0 1 -1 0 0 -1 0 -1 -1 0 0 1 1 0

X (Z 2 ) 2 0 0 2 -2 0 0 -2 0 0 0 0 0 0 0 0

(Z 3 )1 1  1 0 0 -1 1 0 0 -1 1 0 0 -1 1 0 0 -1

(Z3)21 0 1 -1 0 0 -1 1 0 0 -1 1 0 0 1 -1 0

(Z3)12 0 1 -1 0 0 1 -1 0 0 1 -1 0 0 1 -1 0

(Z 3 )2 2  1 0 0 -1 -1 0 0 1 -1 0 0 1 1 0 0 -1

x (Z 3 ) 2 0 0 -2 0 0 0 0 0 0 0 0 2 0 0 -2

(Z4)11 1 0 0 -1 1 0 0 -1 -1 0 0 1 -1 0 0 1

(Z4)21 0 1 -1 0 0 -1 1 0 0 1 -1 0 0 -1 1 0

(Z4)12 0 1 -1 0 0 1 1 0 0 -1 1 0 0 -1 1 0

(Z4)22 1 0 0 -1 -1 0 0 1 1 0 0 -1 -1 0 0 1

X (Z 4 ) 2 0 0 -2 0 0 0 0 0 0 0 0 -2 0 0 2
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Table 6

Matrix elements for points Z, p1 = P2 = p P 3 = 0
,0y,

X 0 Y 1 X0, 1

1 1 e 2 irip 1 e27ip

2 1 -e 2 rip -1 eZ1Trip

1 e 2 irip -1 e rip

4 1 e-e2rip 1 2rip

Table 7

Matrix elements and characters for point M, boundary of zone along direction

Z. Here p1 = P2 = 1/2, p 3 = 0. In the table below the matrix elements for

the primed operations are equal to those for the unprimed for superscript +,

and the negative of these values for superscript - .

X0 X1 X-1 X2 Y0 Y1 Y-1 Y2
M 1 1 - I - I 1 1 - I - l

M1
MZ•1 1 - I -1 - i - I 1 1

M2
3±1 -1 1 - 1 1 - 1 1 - 1

M3
4 1 - 1 1 - 1 - 1 1 - 1 1

M4

(M5 k)1 1  1 0 0 1 0 1 1 0

(M 5 )2 1  0 1 1 0 1 0 0 1

(M5 12 0 -1 -1 0 1 0 0 1

(M s5)22 1 0 0 1 0 -1 -1 0

X (M 5 ±) 2 0 0 2 0 0 0 0
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Table 8

Matrix elements for directions W, p1 = 1/ 2, P 2 = 0, P3 = p. For point X,

p =0. For point R, p = 1/2.

xO X2 YO Y
X0 X2 y0 2

Wi 1 1 1 1

W2 1 1 -1 -1

W3 1 -1 1 -1

W4 1 -1 -1 1

Table 9

Matrix elements for direction R, p1 = P 3 = 1/2, p 2 = 0

X0 X2 Y0 Y2 Xb Xý Y' Y'

111 1 1 1 1 1 1 1 1
R z 1 - 1 1 - 1 1 - 1 1 - 1

R13 1 - 1 - 1 1 .1 - 1 - 1 1
R14 1 1 1 1 -1 -1 -1 -1
R15 1 -1 -1 1 -1 1 1 -1

116 1 -1 1 -1 -1 1 -1 1
117 ]. 1 -1 - 1 1 1 -1 -1

R18 1. 1 -1 -1 -1 -1 1 1
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Table 10

Matrix elements and characters at points V, joining M and A. Here

p1 = P2 =1/2, p3 = p. At M, p = 0; at A, p =/2.

X0 X1 X-I X2 Y0 Y1 Y-I 1 z

V 1  1 erip -e nip -1 1 eTrip -e rip -1

V 2  1 enip -eTip -1 -1 -e ip e ip 1

V 3  1 -enip enip -1 1 -en ip e nip -1

V 4  1 -enip e nip -I -I eTrip -eTrip 1

(V 5 )1 1  1 0 0 1 1 0 0 1

(V5 )2 1  0 evrip eTrip 0 0 -e tip -e nip 0

(V5 )1 2  0 -etrip -enip 0 0 -e nip -e nip 0

(V 5 )2 2  1 0 0 1 -1 0 0 -I

X (V5 ) 2 0 0 2 0 0 0 0
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Table 11

Matrix elements and characters for point A, p1 = P2 = P3 = 1/ 2

x x x x Y2 Y0 Y1 Y-l x , x '- Y

0 1 - 1 2 0 1o - 1 2 -1 o21 0 i Y -l

(A 1 ) 1 1  1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1

(A 1 ) 2 1  0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

(A 1 )1 2  0 0 0 0 1 -1 -1 1 1 -1 -1 1 0 0 0 0

(A 1 )2 2  1 -1 -1 1 0 0 0 0 0 0 0 0 1 -1 -1 1

X(A 2 0 0 2 0 0 0 0 0 0 0 0 z 0 0 2

(A 2 )1 1  1 1 1 1 0 0 0 0 0 0 0 0 -1 -1 -1 -1

(A 2 )21 0 0 0 0 1 1 1 I -1 -1 -1 -1 0 0 0 0

(A 2 ) 1 2  0 0 0 0 1 -1 -1 1 -1 1 1 -1 0 0 0 0

(A2 )2 2  1 -1 -1 1 0 0 0 0 0 0 0 0 -1 1 1 -1

X (A 2 ) 2 0 0 2 0 0 0 0 0 0 0 0 -2 0 0 -2

(A 3 )1 1  1 0 0 -1 1 0 0 -1 1 0 0 -1 1 0 0 -1

(A3 )2 1  0 1 -1 0 0 1 -1 0 0 -1 1 0 0 -1 1 0

(A 3 )1 2  0 -1 1 0 0 -1 1 0 0 -1 1 0 0 -1 1 0

(A 3 )2 2  1 0 0 -1 1 0 0 -1 -1 0 0 1 -1 0 0 1

X (A 3 ) 2 0 0 -2 2 0 0 -2 0 0 0 0 0 0 0 0

(A 4 )1 1  1 0 0 -1 -1 0 0 1 -1 0 0 1 1 0 0 -1

(A 4 )2 1  0 1 -1 0 0 -1 1 0 0 1 -1 0 0 -1 1 0

(A 4 )1 2  0 -1 1 0 0 1 -1 0 0 1 -1 0 0 -1 1 0

(A 4 )2 2  1 0 0 -1 -1 0 0 1 1 0 0 -1 - 1-- 0 0 1

2 (A4 2 0 0 -2 -2 0 0 2 0 0 0 0 0 0 0 0
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Table 12

Matrix elements at points U, connecting Z and R. Here p1 = p, P2 = 0,

P 3 = 1/2. At Z, p = 0; at R, p = 1/2.

X0 0 0 00 o

U 1  1 1 1 1

U2 1 -1 -1 1

U3 1 -1 1 -1

U4 1 1 -I -1

Table 13

Matrix elements at points T, connecting R and A. Here p, = p3 = i/2,

p2 = p. At R, p = 0; atA, p = 1/2.

X0 Y2 X 0 Y,2

T1 1 1 1 1

T1 -1 -1 1

T1 -1 1 -1

T4 1 1 -I -I

Table 14

Matrix elements and characters at points S, connecting Z and A. Here

PI =p 2 = p' P3 = 1/2. At Z, p = 0; at A, p = l/2.

xo 1: 0

(S 1 )1l 1 0 1 0

(SI)z1 0 e 2 Trip 0 -e 2 W1ip

(Sd112 0 -e 0 -e 2 T1p

(SL)2 2  1 0 -1 0

y (S1 ) 2 0 0 0
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Table 15

Compatibility relations

+ r + ++ + r + r
1 7 2 3 3 4 4 5 5

A1  A 4  a 3  A 2  Ad1  4 2 AZ ~1A3 A 2 6 4

A1 A1 A2 A2 A3 A3 A4 A4 A 5  A 5

11 Z3 14 z2 z4 z2 z1 z3 1z4 1213

X 1 X X3 X4 X 5  X6  X7 X8

l aI A 3  A4 A 2 A4 23 A2

Y1 Y3 Y1 Y4 Y4 Y2 Y3 Y2

W1 W3 W4 W1 W4 W3 W2 W2

z1 Z2 z3 z4

AIA3 A2A4 A5 A5

U1U4 U2U3 U1U2 U3U4

S1 S1 S1 S1

+ + + + +
M+ M M M M M M M

+ M 2 2 3 3 4 4 5 5

4 :2 1 : 3 Z 1 Y4 x2 E3

Y3 Y"2 Y"1 Y4 Y3 Y"2 Yl Y"4 YlY3 Y2Y4
V1 V1 V2 V V3 V V V4 V5 V5

1 1 v2 v2 V3 v3 v4 v4 v5 v5

R1I R2  R 3  R4  R 5  R 6  R 7  R8

U1 U1 U3 U4 U2  U4  U 3  U 2

w I w 3 w 4 w 1 4 w3 w 2 w2T1 3 T4 I 1 W4 T3 23 2
T1 T T1 T4 T 4 Tz T3 T
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D4 h(P 2 /mm

Table 15 (continued)

A1 A2 A3 A4

SI SI SI S1
S1S1 S1 S1

TT 2 T3 T4 T2 T TI T4

V5 V5 1VV3 V V4
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SYMMETRY PROPERTIES IN THE SPACE GROUPS

2 - 7 5 6
3(R ,D3 (R132), D 3 d(R 3 m), AND D 3 d(11c)

John C. Slater

The space groups considered here have the rhombohedral or trigonal

Bravais lattice, and can be conveniently considered together. A good many

important elements and compounds crystallize in one or another of these
2 -space groups. Thus the ilmenite structure has the space group C3 (R3), the

AlF 3 structure has D7(R32), the arsenic structure, the CdCl 2 structure, and3 35 -2
the LaOF structure have the space group D3$(R3m) , and the calcite and

corundum structures have the space group D3 d(R~c). Positions of atoms in

the structures listed above are given in Table 1.

The three fundamental vectors T. , t, r of the primitive unit cell are
1' 2' 3

of equalrmagnitude, and make equal angles of a with each other. In rectangu-

lar coordinates they are expressed as

Z1 -1 =r(-1 - N41 + A-31

The length of the vectors t1 , T T is ]s +--r , and the angle a is given by the
2 ' 3

equation

-s 2 /2 + r 22 (2)
cos a -s/2 r (2

S +r

from which we can find s and r when the length of the vector and the angle

a are given, as is usual in crystallographic work, The vectors b' b2- b 3

of the reciprocal lattice are given by

1 -s' s' ( T2
b 1 s'1+ r l•, bZ 2 -= -' + 3) + r't, •3 . . .- • '•

2 2
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where s' = 2/3s, r' = 1/3r (4)

From Eq. (3) we see that the reciprocal lattice is also rhombohedral. The

Brillouin zone is shown in Fig. 1, with convenient notations (partly following

Koster ) for the symmetry directions. The inclined hexagonal faces are per-

pendicular bisectors of vectors :k-5i, +-62't"h-S3' The rectangular faces are

perpendicular bisectors of the vectors k (_b 2 ), k (2+53), ±k (5 1i+- 3 ), and the

top and bottom faces are perpenticular bisectors of the vectors * (61 +9-Z +3).

The height of the Brillouin zone is 3r', and the dividing lines between the

rectangular faces and the inclined hexagonal faces come at distances r' and

2r' from the top and bottom faces. The symmetry points indicated by A and

B in Fig. I are the intersections of the vectors *'Ell etc. , and :E {S1 +T32 ), etc.,

with the faces of the Brillouin zone.

The point groups C3i and D which are found in the first two space

groups considered, may be taken as special cases of D 3 d' met with the re-

maining two. Consequently we shall carry through the case of D3 d, and shall

specialize for the other cases. The operations of the point group D 3 d' in

cylindrical coordinates, may be taken to be defined by

X0 q' (r, 4, z) = W,(r,4,z)

X3 i (r, €, z) = 4(r, 4,+ir, -z)

Y0 '4i(r, z, z) = ,(r, -4,, z)XY3q)(r, 0, z) = 4,(r, 0-1r, -z)

*1
Y,,,p (r, 4, z) = 4,(r, -4* -, z)

Y34i (r, 4,z) = i(r, -O+n, -z) (5)

The operations of C3 i may be described in terms of Eq. (5) as the X opera-

tions listed there; the operations of D 3 may be described as X0 , X1 2 , Y±I1

Y 3 In Table 2 we describe the operations of D3d in terms of their effect on

a function of the vector _r expressed in the form

r t + 1 t + tt 3(6)

In Table 3 we show the effect of these operations on a plane wave of the form

tp = exp 2ITi[ (hl+pl)bl+(h2 +p 2 )b 2 +(h3 +P3)9 3 ] (7)

where the reduced wave vector is 2Tr{(pll+p 2 2+p 3 -S 3 ), and the h's are integers.

These operations combine according to the multiplication table
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ZX

Fig. I Brillouin zone for the rhombohedral Bravais
lattice, with notation for symmetry directions.
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XqXp = Xq+p

XqYp -Y-q+p

YpXq = Yp+q

Yq Yp = X-q+p (7)

in which if any subscript lies outside the range from -2 to 3, we are to add or

subtract integral multiples of 6 to bring it within this range.

The space groups under consideration are symmorphic, except for

the case of D d(R~c). Consequently the multiplication table as just stated can

be used for the space groups as well as for the point groups. For the case of

D 6(13c), a non-primitive translation (1/'2)(-t+T'2 +t.3 ) is associated with each

of the Y operations; no non-primitive translation is associated with the X's.

Consequently the effect of one of the Y operations on a plane wave is found

from Table 3 by multiplying the value given by that table by the factor

eji(h +Pl+a2 +P2 +h 3 +P 3 ) (8)

The effect of these non-primitive translations on the multiplication table for
6 -

the space group D3 d (R3c) is found by using Eq. (7), and multiplying the result

by an extra factor as follows:

Any Y operating on an X with an odd subscript,
factor e 2iri(pl +p 2 4p 3 )

Any Y operating on a Y with an even subscript,

factor e 2 ri(Pl+P2+P3) (9)

In all other cases there is no extra factor.

We now give in the remaining*tables the matrix elements for the

various irreducible representations of the four space groups under considera-

tion, and the compatibility relations. Since there is no generally accepted

convention for the naming of the irreducible representations of these space

groups, we have introduced names for them.
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Table 1

Positions of Atoms in Structures Having Space Groups Under Discussion

Ilmenite Structure C3 (RA). FeTiO3 . Iron atoms at positions • u, il = u,

= u and g -u, Tj = -u, • = -u, where u = 0.358; titanium atoms for =,

= v, t = v, and ý = -v, i = -v, ý = -v, where v = 0.142; and oxygens at

general positions -E(•,•, ntý, tt j), where ý = 0. 555, il = -0. 055, and • =

0. 250. Other similar compounds have similar parameters.

AlF 3 Structure D7(R32). Aluminum atoms at uuu and Uuiu (that is, u =AI 3 St u tu eu

i =u, =uand =-u, i = -u, =-u) where u = 0.237. One type of

fluorine at Ovv, vO0v, v-v0, where v = 0.430. Another type of fluorine at

1/2, ww; w, 1/2, w; ww, 1/2, where w = 0. 070. Other similar compounds

have similar parameters.

Arsenic Structure D 5 (R-m). Arsenic atoms at uuu and Uu-u, where
3d

u = 0. 226 for arsenic.

CdCl Structure D 5 (RTm). Cadmium atom at origin, chlorine atoms at
2 3d

uuu and-i-Uif, where u is approximately 1/4.

LaOF Structure D 5 (Rim). Lanthanum atoms at uuu, uiTuu, where u = 0. 242.
3d

Fluorines in similar positions with u = 0. 122; oxygens in similar positions,

with u = 0. 370.

Calcite Structure D6 (RTc) CaCO . Calcium atoms at origin, and
3d

1/2, 1/2,1/2. Carbons at :L(1/4,1/4,1/4). Oxygens at ±(1/4-u, 1/4+u, 1/4);

1/4+u, 1/ 4,1/ 4-u; 1/ 4,1/ 4-u, I/ 4+u), where u = 0.243.

6

Corundum Structure D3 d (R~c) AlZ0 3 . Aluminum atoms at

*(I/4+u, 1/4+u, 1/4+u; 1/4-u, 1/4-u, 1/4-u), with u = 0. 105. Oxygens at

*(1/4-v, 1/4+v, 1/4; 1/4+v, 1/4, 1/4-v; 1/4, l/4-vl/4+v), with v = 0.303.
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Table 2

Operations of the Point Group D 3 d

1 23
x&O(~ =

Y -P(r-) =

3d

ex 2ir

X4exp2r
X3L e p 2r)

?(r) exp I'tR3 + 3 ~( 2+p 3)i~(~ ~j
yyq exp 1'2+ rr
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Table 4

Matrix elements and characters at point 1". P1 = P2 = p 3 = 0. The abbrevia-

tion w stands for eziri/3

C3i •

Xo Xi X_1  X2  Xz X3

1"1 1 1 1 1 1

"r2 1 w o w 1

r 3  1 2 2 1
1 2 2

1"CI-)- C. C.) -1

r51 _W - 2 w2 -1r 6F51 -1• -1o 1o 1 -1

7
D3 (R32)

X0 xz X- 2  Y1  Y3

r 1 1 1 1 1 1

r 2 1 1 1 -1 -1 -I

(1"3)11 2 w wo 0 0 0
2

(r 3)21 0 0 0 1 2 1

(r"33)12 0 0 0 2 w I

(1 3)2 1 2  wo 0 0 0

x(r 3 ) 2 -1 -1 0 0 0
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Table 4 (Continued)

D5 6
3 d {(Rm) and D3 d (R:c)

X0 X1 X- 1 X 2 X- 2 X3  Y0 Y Y-1 Y2 Y-2 Y3

F1 1 1 1 1 1 1 1 1 1 1 1 1

W2  1 1 1 1 1 -1 -1 -1 -1 -1 -1

1 -1 -1 1 1 -1 1-1-1 1 1 -

F 1 -1 -1 1 1 -1 - 1 1 -1-1 1

1 1 1 1 1 1 1 1

( 5) 22 1 -' 2 -- 7 - _2 7 - T -2 I- -Z

x (rd 2 -1 -1"0-

6)11T I• _2- _7 To T _

(6'}21 T --2 T -- ---- --

)4 OF 0 NT -N "$ _3(F) 12 0 -T--- - -- T- --- -2---- -2- -2-

1 1 1 1 1 -1 1 1 1 1(1 5 )2 2  T 1 -7 7- -7 z7 z -7

x (F6) 2 -1 -1 -1 -1 2 0 0 0 0 0 0
(F)1 1 1 1 1 1 1 1 1 1
(2?)1 2 2[-• - -1 1 2 2 -• -2 --

-2_ -2 2 0 0 -2 -2 -2- - 0

2HT 7-- T - 0 0 qYqT
1 1 1 1 1 1 1 1

(622 12.2 z -2 - -1 -1 -2 -2 "2-2

X (F 6 ) 2 1 1 -1- - 2 0 0 0 0 0 0
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Table 5

Matrix elements and characters for propagation along A, z axis. Here
PI = P 2 = P3 . At r, p's equal zero. At Z, P, = P2 = P3 = 1/2. Abbreviation

w stands for e Z .ri/3

2 7

23i (R"T) and D3 (R32) 90 -2 
-_2

A1 1 1 1
2

A2 1 w •

A 3  1 w 2 o

D5 (RTm) and D d (R-c) The Abbreviation a stands for elri(pl+p 2 +p 3 ).--3d 53
For the group D 3 d lR3m) a is to be replaced by unity.

Xo X2 X-2 YO Y2 Y-2

A 1  1 1 1 a a a

A 2  1 -a -a -a

1 1 a a
( 3 ) 1 1  1 2 12 - -

(A )0 403- 0 
2

a
1

'- a4"-
0 2 -Z -T-

(A 3 )1 2  0 -0- -a--- W

1 1 a a
(A 3 )2 2  1 -7- -a -

x (A-3 ) 2 -1 -1 0 0 0
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Table 6

Matrix elements and characters for point Z, P1 = P2 = P3 = 1/2. For C~i (R2),
7 D5P1=P=P3=13

D3 (R32), and D3d (R'Tm), the symmetry is identical with r, and the same

table can be used, replacing the symbols F for the representations by Z. The
2,T i/ 3abbreviation w• stands for e

6
D3 d (R~c)

X0 X-1 X 2 X-2 3 0 Y Y -1 Y2 Y-2 Y 3

(Z1)11 1 0 0 1 1 0 1 0 0 1 1 0

(Zl)2l 0 1 1 0 0 1 0 1 1 0 0 1

(ZI)12 0 1 1 0 0 1 0 -1 -1 0 0 -1

(ZI)2 2  1 0 0 1 1 0 -1 0 0 -1 -1 0

(z1) 2 0 0 2 2 0 0 0 0 0 0 0

2 2
0 2)0I 0 0• 0 0 1 0 0 0 0 0 0

2 2

(Z 2 )12  0 0 0 0 0 0 1 -o -W -W - -1

( 2 )2 2  1 2 2 1 0 0 0 0 0 0

X(Z-) 2 iNTS- i4 -l -1 0 0 0 0 0 0 0
2 2

(ZI -1 1 W 2 1 0 0 0 0 0 0
(Z3) 0 0 0 0 0 0 1 02 2 0 0

2 2(Z3)12 0 O0 0 0 0 0 I1 -W -W0 2 -W - -1

(Z3)22 1 -W -W 2 w2 w -1 0 0 0 0 0 0

X(Z3 ) -i3'- -- -1 0 0 0 0 0 0 0
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Table 7

Matrix elements and characters for propagation along A, y axis, and A',
direction parallel to y axis passing through A. For the group C3i (R) these

are not symmetry directions. For A, p1 = 0, PZ = -P 3. For A', P1 = 1/2,

P2 = -P 3 . Point A, P1 = 1/2, P 2 = P3 = 0.

7 56
D (R32), D (R'rm), and 3d

X0 Y3
&l 1 l

2 1 -1

Table 8

Matrix elements for propagation along a direction in the xz plane. Here p2 =p 3 .

For F, pi = P2 = P3 = 0. For A, p, = 1/2, P2 = P3 = 0. For B, pl = 0,

p2 = p3 = -1/2. For C3 i (R-) and D7 (R32) the general propagation in the xz
plane is not a symmetry direction.

D5  6-3d (RAm) and D3 d (R-c)

X0 Y0

Even 1 1

Odd 1 -1
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Table 9

Matrix elements and characters for the point A. Here p1 = 1/2, P2 = P3 = 0.

3i (R3)

X0 X3

A 1  1 1

A 1 -i

D7 (R32)

0 3

A 1  1 1

A 1 -1

D 3 d (R-m)

X0 X3 Y0 Y3

A 1  1 1 1 1

A 1 1 -1 -1

A3 1 -1 -1 1

A 1 -1 1 -1

A4

D 6 (R3-c)D3d

X0  X3 Y0 Y3

(Al ll 1 0 0 1

(A 1 )2 1  0 1 1 0

(A 1 ) 1 2  0 1 -1 0

(A 1 )2 2  1 0 0 -I

X (A,) 2 0 0 0
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Table 10

Matrix elements and characters for the point B. Here p1 = 0, P 2 = P3 = - 1/2.

For C31 (R3") and D 3 (R32) the symmetry situation is the same as at the point
315 6 5

A. For D3 d (Rim) and D 3 d (RTc), we have the same situation as for D 3 d (RSm)

at point A. The matrix elements are then as follows for these two cases:

X0 X3 YO Y3

B 33

B1 1 1 1 1

B2  1 1 -I -1

B3  1 -I -1 1

B4  1 -1 1 -1

Table 1 1

Compatibility Relations

C 2 (R'S)
3i

r1 ,z 1  rIz 2  r3, Z3 4# Z4 r 5 'z5  r 6 ' Z 6

A1  A3 A2 A2 A3 AI

D3(R32)

ri1 , Z 1  rz, z 2 r3'1 3A

A1  A 2  A3

D5

3 d 5(Rm)

r 1, z1  r2, Z 2  r 3 ' Z3  lr4 , Z4  r5' Z5 r6, z6

A Iz A 1  A2  A 3  A 3

l 2 Al AI &l 2 &l' &2
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42. SPACE GROUPS C 3 1 . D 3 , D 3 d, AND D3 d

Table 11 (Continued)

D d (R-mn) (continued)

AI A 2  A3 A4

A1 A& A' AI
1 2 1 2

D6
3 d (R~c)

1 2 F3 P4 F5 1 6

AI A 2  A 1  A2 A3 A3

1 2 2 A1 1a 2 &,1 2

Z1 Z2 3A1

z z 2 z3A1

AI A A3 A 3

Reference

1. G. F. Koster, Space Groups and their Representations, Solid State
Physics, Vol. 1, p. 173, Academic Press Inc., New York, 1957.
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BE NZENE

Jules Moskowitz

The configuration interaction calculation based on the "core potential"

approximation discussed in the past progress report has been slightly extended.

The three center penetration integrals have been accurately computed rather

than calculated by means of the Mulliken approximation. As anticipated, the

basic results have not changed significantly. The more one improves the 7r

electron wave function the worse the agreement with the experimental results.

The 3 B lu state, for example, is computed at 2. 44 ev while the experimental

value is 3. 66 ev. -The "'core potential"' approach thus seems to contain a funda-

mental defect.

A possible remedy would be the inclusion of the sigma electrons

explicitly. This is fundamentally a data processing problem. A set of pro-

grams to perform the necessary calculations is in the process of being written.

A self -consistent-field calculation on the benzene ground state would be the

initial step in this approach.
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AROMATIC AND RELATED MOLECULAR CALCULATIONS

B. T. Sutcliffe

As outlined in a previous QPR (No. 47, January 15, 1963, p. 116),

calculations are being attempted on some molecular systems using the method

of "Generalized Product" functions (l. It is assumed that the "group" functions

which go to make up a particular Generalized Product function are orthogonal

in the "strong" sense of ref. (1) and are each composed of sets of one electron

functions.

Programs have been written which, starting with integrals over an

arbitrary basis of one electron functions, produce integrals over a suitably

orthogonal basis. The minimum number of required integrals are produced

and they are arranged in such a way that the elements of the effective Hamil-

tonian (seeI1) eq. 25, p. 363) for each group in turn may be made up quickly

and easily.

It is hoped shortly, to perform a pilot calculation on ethylene using

Gaussian functions to obtain the basic integrals.

Reference

1. R. McWeeny, Rev. Mod. Phys. 32, 335, (1960).
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THE POLYATOM SYSTEM

M. C. Harrison

The POLYATOM system of programs in its present preliminary form

is capable of evaluating LCAO-SCF wavefunctions for a closed shell molecular

system, expressed in terms of not more than 50 s and p-type Gaussian

functions centered on not more than 20 nuclei. The various programs com-

prising the system communicate with each other via magnetic tape, on which

data is stored in a specified format. It is convenient to crystalize this format

at an early stage of development, so that programs using the same data may be

written in parallel. Accordingly, the content and format of two of the mag-

netic tapes if given in detail below. It should be noted that the file-handling

routines described briefly in CCL Technical Note 19 are used in referring to

magnetic tape. This means essentially that each file of information is given

a BCD name, and can be located on the tape when this name is known, what-

ever order the files may be in.

(i) Tape KMLIST

This tape is a logical unit 12, and contains 3 files, named K-LIST,

V-LIST, and M-LIST. Given an ordered set of one-electron functions '

12' . .- 7n' with certain symmetry properties, these files contain labels of

non-zero integrals of the types (q, IK imj), (,I IV Inj), and (1i.t IMIk, where
1 ni nj1M1 a1

K is any totally summetric one-electron operator such as unity or -1/2 V , V
I

is any operator having the symmetry of the nuclei such as Z 1, and M is any

totally symmetric two-electron operator such as 1 . The indices in each labelr

are given in standard order; that is, with i>j in Ue one-electron cases and

with i> j, k> 1, and (ij) ? (kl) in the two-electron case, where (ij) = i/2 (i+l) + j.

The labels of integrals which are identically equal within a minus sign, because

of the symmetry properties of the ia,are given consecutively.
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Each of the three files is divided into Fortran logical binary records,

with the first word in each record being a Fortran integer not greater than 500

giving the number of labels in the record, the second a Fortran integer which

is 1 if the record is the last in the file, and zero otherwise, and the remainder

the labels, one in each word. Each word is divided into 6 fields, comprising

bits s-5, 6-11, 12-17, 18-23, 24-29, 30-35. For the one electron integrals,

fields 1, 2, and 6 are used to store i, j, and a tag respectively. For the two-

electron integrals, fields 3 and 4 are used to store k and 1. The value of the

tag is zero if the integral is not identically equal to any preceding integral, one

if it is equal to the last integral with a zero tag, and two if it is equal to minus

the last integral with a zero tag.

The ordering of the labels is such that the integrals which are equal

within a minus sign are in standard order (that is, in increasing order of

((ij) (ki)) ), and the integrals with zero tag are also in standard order.

(2) Tape KMINTS

This tape is a logical unit 11, and contains 4 files, named G-INTS,

T-INTS, V-INTS, and M-INTS. These contain respectively the values of the

overlap, kinetic energy, potential energy, and electronic repulsion integrals.

Each file is divided into Fortran logical binary records, with the first two

words in each file having the same meaning as in (1) above. The remainder

of the record consists of the labels as before, but with each label followed by

the value of the integral as a floating-point word. No assumptions should be

made about field 6 of the label, however. It should not be assumed that there

is only one integral for given values of the indices. Thus file V-INTS, for

instance, may contain several entries for integral (i 1V Ij), corresponding to

different centres, which should be added together.

Note that the present format can only be used for up to 63 one-electron

functions. Should this number be insufficient the tape format can easily be

changed. However, preliminary tests on the 709 suggest that the computation

time necessary for a larger basis set will be excessive.



47.

MOLECULAR INTEGRALS OVER SLATER ORBITALS

D. E. Ellis

I. One and Two Center Integrals

A set of computer routines has been prepared by Mr. C. A. Christy

and the author for the computation of all one and two center integrals arising

in energy calculations using a basis of Slater orbitals. The one center inte-

grals are computed from analytic formulae, and two center integrals are

evaluated by the Barnett-Coulson method (2. All angular integrations are

carried out analytically. The radial integrations are performed by making

use of the analytic series expansions for molecular zeta functions(3) ;m, n'
except for the exchange integrals, < AB I AB >. The < AB I AB > integrals

appear as an infinite series of radial integrals multiplied by angular

coefficients, and these radial integrals are computed by means of Gauss-

Legendre and Gauss-Laguerre quadratures{1).

Testing of the routines has been completed for combinations of Is,

Zs, 2 p, and in some cases, 3d, orbitals. Results have been compared with

the DIATOM program written by Switendick and Corbato(4 ), and with several

other integrals programs. Further testing is planned.

Some comparison may be made with the DIATOM program, which

has been in frequent use. The angular integrations proceed in much the same

manner in both programs. DIATOM makes use of equal interval rule numeri-

cal integrations for all radial functions, including one center integrals. The

analytic and Gauss integrations used in the routines being described permit

higher accuracy and greater speed. The DIATOM program computes all

non-zero integrals for a given basis set, and allows the basis set to be chosen

as a linear combination of Slater orbitals. Sometimes only a few integrals,

or integrals of a particular type are desired and it would be convenient to be
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able to compute only those integrals. A very simple main program making

use of the set of routines is being written for this purpose.

In the computation of a large number of integrals required, for

example, in a self-consistent molecular calculation it becomes possible to

decrease the computation time per integral very considerably by saving

auxilliary functions from one integral to the next. As an example, exchange

integrals requiring 1. 5 minutes computation singly have been produced at an

average rate of about 10 sec. apiece when a number are computed at once.

Some function saving has been incorporated into the set of routines, and a

main program is planned which will set up an efficient calculation of integrals

over an entire basis.

II. Three Center Integrals

A computer routine has been written and partially tested for the

evaluation of the three center nuclear repulsion integrals, < AB I-' >. This
rc

routine, together with the routines described above, allow the computation

of all integrals appearing in the one-electron Hamiltonian. Formulae have

been derived for the two electron coulomb, < AA I BC > and exchange

< AB I AC> integrals, and are being programmed. An integrals package is

planned which will combine all routines under control of a main program for

most efficient calculation.

III. Four Center Integrals

Elsewhere in this report Mr. J. P. Wright describes a program

which he is writing to evaluate four center electron repulsion integrals be-

tween combinations of s, p, and d orbitals. We plan to co-ordinate the

programs described above with this.

IV. Formulae

We want to sketch the derivation and give the formulae for a few of

the integrals, but for the sake of brevity some steps and definitions will be

omitted.

Define the normalized Slater orbital as

N rn-i e-Kr(- m pm (W Sm(

P by Hobson's definition, m > 0

S (M) = cos (mo) S (*) = sin (m4)
Ml mI
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and use the following expansions and definitions

rM-1 e-Krb =1 0
rb e =•(kl'M00~, ra, XR k(

X=0

I
I~ m T i+mA +mn i 1-i n arb PI (b) =m' -H (i+m) ra R i a )S m a)

i=m

(z-axes antiparallel)

00

r12 (r a1 , r)P GI1 2 )

These relations prove sufficient for the derivation of all one and two

center formulae, and the three center nuclear repulsion integral. It is assumed

that the coordinate system on center A is right handed, and that system B is

left handed, with z-axes antiparallel. To allow parallel co-ordinate axes in an

absolute frame, and to compute the remaining three and four center integrals

requires the introduction of the rotation matrices for solid harmonics. This

we delay until a future report.

The method of derivation is to expand all functions onto center A, to

couple the resulting Legendre functions, to expand products of trigonometric

functions, and to perform the remaining angular integrals analytically. One

important result is an expression for the potential integral

<ABIr 1 >= I(A, 1)p (B,I) 1)I-dV

12 11r 2

S21NIN(2) n +n + i +M I +m
(T N(iZ +mz)(KZRb ,2*2

1 2 2 1 m 2j 2 1ml-m21 12=m 2

'(2X 2 +1){ang}{i-Y}
2Z
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rr r1.XA1~12' 1 m +m I 1., `~21
1 '1 2 k2 1 ,2 1ml m2 11-2

where -angt=*(- F) j, ml,_mzPj (4a ) Sý (l+m 21(a 2

SIm - m I a2
1 2

+ slmF Jmlm2Pj (}±a2 ) S (4'a2 )}

Im1-m2 I

(the F's are a sum of products of two DIS)

Ktn
1 +i2 +1

and e n2_ 2t 1 2, 2 (1,t, K2Rb)6(t, K 2 r a)dt

To obtain the three center nuclear attraction integral, we merely set r = Rc

a= 4 = 0 -a = . The two center exchange integral is obtained aia 2  c a2 c

follows:

<AB AB>=S<AB.FL__I>.A.Bdv 2r12

and the result is

00 2 )i2+m 2." +m?)-i

<ABIAB > = 6 - - I E ( (2N)
j= Im 1 3 m 21- 2  +m

A4

i 4+m4 4I+m4 4-i4 (2k +1)(2X,4+l){- han g}H 4- (i4+m4) (K Rb% 41 (2+1an

1 4 4 2 2,x (Zj+1) 2  f-Y 9i 4=m 4 2z k4

finite

where K3  KI- -- 
-.

K n 3+i4 +1-- K4 n-2 nl+i2 +1
ZX e 2 SS S, K e 12

n212, X 2 (1, t,KZRb)* & .(s, t)dtds

and { ang is a sum of four terms, each of which is a product of two F's and
a factorial ratio.
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FOUR-CENTER MOLECULAR INTEGRALS

J. P. Wright

Testing has begun of a program written to calculate four-center

molecular integrals for any combination of s, p, and d functions with un-

restricted principal quantum numbers. The zeta function method of Barnett

and Coulson has been used. The formula for the general case has been derived

using a notation similar to that given by D. E. Ellis in a report elsewhere in

this QPR, where he discusses his work on three-center molecular integrals.

The formula will be given in a future report, after testing has been com-

pleted.
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EXPANSION THEOREMS FOR SOLID SPHERICAL HARMONICS

J. P. Dahl
M. P. Barnett

Some expansion theorems for solid spherical harmonics have been

derived. It is hopeful that these theorems will prove to be useful in the calcu-

lation of three and four-center molecular integrals.

Consider the two coordinate systems a and b (Figure 1) with parallel

axes. The location of b relative to a is specified by giving the vector

(X, Y, Z) = (R,e,), where the rectangular and spherical coordinates of

expressed in a have been denoted (X, Y, Z) and (R, 9,*) respectively. With a

similar notation a field point P may be specified by giving its coordinates in

b, i.e. rb = (xbb'YZb) = (rb'Ob'Ob) or in a, ra = (xaya z a) (rae 02a)' The

relation

(xb'yb' zb) = (Xa-Xya-Y, Za-Z) (1)

obviously holds.

z b

bb

r

Xb R

'b 
aL 

Ya

x
a

Figure 1
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The following expansions are then valid:

-ei M~b

N PM cs e) e-iM~b

b N (cos eb 1cos(MYb)
sin(Mb)

N n S: (_N-n (N+M\ rn RN-n Pm(cosn a) ePM-m (cos a)

H n+mj a n a N-n
n=0 m=

n-N+M

im a i(M-m)o

e-'m a -i(M-m)* 3Zmae (3)

cos[m~a + (M-m)#] (4)

sin[m(ba + (M-m)O] (5)

The associated Legendre functions are those defined by Hobson(l)

pm( m m dm

pm(cos 6) = (-)m sinm edc m d P (cos 6), m > 0 (6)n d(cos 6

P-m (cos 0 = ()m (n-rn)! pm (cos 6) (7)
n (n-+rniT n

The relation (7) holds for all m values. Further it follows from (6)

that Pm(cos 6) = 0 for 61 > n.
The coefficients (N+M occurring in (2) - (5) are the binomial\n+m

coefficients, i.e.
(P)= P

It suffices to demonstrate the validity of (2), since (3) is merely the

complex conjugate of (2). Further (4) and (5) are obtained from equations (2)

and (3) simply by adding and subtracting these two equations.

From the defining equation (6) it follows that

pn (cos 6) = (,)n (2n)! sinn.
n 2 n n
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or:

r nPn (cos ) e H (2n)! (x+iy) n (8)
n nZ n!

Considering Eq. (1) we then obtain

N N iN~b N(2N)t  N

rb PN(cos 6b) e = ( 2N ) [ (xa+iya) - (X+iy)

2 N!

N
H N (2N)! H N-nN (x +iY)n (x+iy) N-n

n=O

or: N
iN N

NN N N-n ZN n N-n n N -n'
rbPN(OS e)e = )r R P (Cos e ) P-(Cos 8)

n=O

in ca i(N-n)(

Equation (9) is obviously identical with equation (2) in the case M=N.

Equation (2) has thus been shown to hold for the maximum value which M can

take. From the process of induction it follows that the equation is valid in

general, if validity for M implies validity for the value M-1.
Suppose therefore that (2) holds for the value M. We then consider

simultaneous, infinitesimal rotations of the coordinate systems a and b

through the same angle about parallel axes. The changes in the functions in-

volved are then found by applying the operators of angular momentum, since

these operators are proportional to the operators for small rotations. The

fact that ra, rb and R are all rotated through the same angle then implies that

operating with an angular momentum operator lb on the left hand side of

Eq. (2) is equivalent to operating with the operator I + 1 on the right hand side.
a

Here L and I are the same functions of (8, 0) and (e , a) as 1bis of (90b)'

From the well known properties of the operator I1 - it it followsx y
that

(x -11y) Pm (cos 6 e irn = (n+m)(n-m+l)Pm-l(cos 6) ei(m-l)ý (10)

Operating on the left hand side of Eq. (2) with the operator I - if

and on the right hand side with the operator (Ix-i.y) + (Iax - l ) we obtain:
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(N+M)(N-M+l)r N pM-(cos 0b) ei 1b N

N n

(_)N-n N+M (n+m)(n-m+l) rn R

n=O m=
n-N+M

n-1 (i(m-l)pa i(M-m)op coae)PM~ m(cos ®)e e
n a N-n

N n
_N-n n+mM +M-m-n)(N-M-n+m+I)rn RnN-n

n=O m=
n-N+M

impa i(M-m-1)4pm •M-m-Ia

n a N-n (cos 0) e e

Writing m for m-I in the first summation on the right hand side it is

readily shown that this equation may be rewritten as

N M-I i(M-l)4b_
rb P N (cos 0b) e (

SN-n (N+M-1) ran RN-nI~ ~ I () Nn+m) ra
n=O m=

n-N+M-1

S(Cos )PWM-m-i (cos a) e im a e

which is just Eq. (2) for the value M-1.

The general validity of the equations (2) - (5) has thus been demon-

strated.

After completion of the present work it has come to our attention that

an equation similar to Eq. (2) has been derived by M. E. Rose (J. Math. and

Phys. 37, 215 (1958)), who applied the algebra of irreducible tensors. The

equation appeared as a subordinate result in a study of the electrostatic inter-

action of two charge distributions. Rose presented his equation in the form:

yN (rb)= (4-,)1/2 [(2N+l)! ]1/2

N n

H n (.-n (n, N-n, N; m, M-m) m - M-m r

n=0 m=-n [(2n+l)!(zN-sn+l) ] 1/s

where gmn(r') is a normalized solid spherical harmonic:
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S&W(• = (2)-1/ 2 2n+ (n-m)1/2 rnpm(cos e

and the C-coefficients are vector addition coefficients. By substituting the

actual form of these coefficients into Rose's equation the equivalence with

equation (2) could be demonstrated.
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MONTE CARLO METHOD FOR MOLECULAR INTEGRALS

C. W. Nielson
B. J. Woznick

The Monte Carlo method has been widely used for solving problems in

neutron kinetics and has sporadically been used for the evaluation of multi-

dimensional integrals for other purposes~'' 2,3, 4). We are investigating the

possible usefulness of this method for the evaluation of multicenter molecular

integrals.

The advantages of this method are its extreme simplicity, the fact

that it is not limited to any special type of orbital functions, and the fact that

it provides automatically an estimate of the error. However, Monte Carlo cal-

culations are almost certain to take much longer for comparable accuracy than

methods which make special use of the analytic properties of the functions in-

volved, such as the zeta-function expansion method or the Gaussian transform

method. Nevertheless, it seems that the Monte Carlo approach has real value

for the evaluation of integrals involving unusual functions, perhaps numerical,

and also for the checking of other methods as they are extended into new do-

mains. In addition, the simplicity of the method makes it feasible to implement

it on very small computers.

The basis of the method may be seen by considering the definition of

an integral as

f(x)dx=lim Z f(xk) Axk (1)

a hxk-O k=l

where Axk = xk+l -xk and xk is some point in this interval. Then, if the

intevals are chosen to be equal and the limits taken as 0 and 1,
1 nSf(x)dx = lim 1 k•l 

(2)0 =n-• o n fIxk)
k=l
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wher9 the xk are distributed uniformly in the interval 0-1. Ordinary techniques

of integration achieve this uniform distribution by chopping the interval into n

equal subintervals. The essence of the Monte Carlo method is to choose these

points at random; in this context, "at ramdom" simply means that we have a

set of points which are uniformly distributed and statistically independent.

There is, of course, no value in doing this for one-dimensional inte-

grals. However, theorems of probability theory have been proven which show

that the probable error in the integral goes down as I/,rN regardless of the

dimensionality. In contrast, straightforward numerical integration requires

the number of points to increase geometrically with the dimension. For a

sixfold integration such as occurs in molecular integrals, straightforward

numerical integration seems out of the question, whereas Monte Carlo integra-

tion does not.

Another important tool in making the technique practicable is the use

of a distribution function, or weighting factor. Assume that the integrand can

be written as the product of two factors

I = a f(x) g(x) dx (3)

where

5g(x) dx = 1 (4)

and g(x) is everywhere non-negative. Then we can take this function to be a
*

probability density and select the points x. according to this distribution.

This having been done,

n

f(x) g(x) dx = lim N1 f(xk) (5)

Qualitatively, this procedure can be looked upon as dividing out an exactly
integrable part of the integrand leaving a mQre smoothly varying function to

integrate numerically. If the distribution function is chosen appropriately, the

numerical integration points are taken only where the integrand is significant,

hence the technique is sometimes called importance sampling.

We have used these methods to calculate four-center molecular inte-
grals using iS orbitals on all centers. The distribution function used was a

product of two three-dimensional factors, one for each of the two electronic

coordinates systems of the molecular integral. Each factor was a spherically

symmetric function centered somewhere in the molecule. The radial part of
the function was a constant inside a radius characteristic of the molecule and

of the form e-Tr outside this radius where r was chosen to match the

r
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assymptotic form of the orbitals. This function is suitable for a distribution

function because it can be integrated exactly and thus normalized. Random

numbers uniform in the unit hypercube are generated on the computer by

standard algorithms; these are more properly called pseudo-ramdom numbers,

since they are in fact generated by an exact algorithm. They do, however, share

most of the mathematical properties of random numbers. The uniform distri-

bution was transformed by a "stretching" process subject to the requirement

dT = y fr') dT (6)

0 0

where p is the radius in the unit sphere and r is the radius in the final distri-

bution. (Points falling outside the unit spheres are discarded.)

As an example of the results, a typical integral was obtained using

5000 random points as .35 ± . 01 whereas the zeta-function programs availa-

ble give in a comparable time 0. 36735, a value believed to be correct to all of

the figures given. The Monte-Carlo computer program required for this

calculation is extraordinarily short compared to the zeta-function program

system. Also, negligible amounts of temporary storage are needed. Thus it

is demonstrated that integrals of limited accuracy can be obtained very simply

by this method. However, in view of the fact that the Monte-Carlo error would

decline only as 1/1,4N, accuracy comparable to the zeta-function method is

practically impossible.

Recently Haselgrove(5) has suggested using so called diophantine

numbers in a fashion similar to the random numbers in the Monte-Carlo

method. These numbers also tend towards filling space uniformly, but with

less fluctuation from uniformity than random numbers. His claim is that the

error in an integral in this case goes down as 1/N rather than I/,KTN as in the

Monte Carlo case. We are now investigating the application of these dio-

phantine numbers to the evaluation of molecular integrals.
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THE QUADRATIC JAHN-TELLER EFFECT

Don E. Ellis
Robert Englman

The ground-state energy expectation values have been computed, as

functions of the strength of the linear interaction (k) and the quadratic coupling
(1), from the Hamiltonian and the approximate solution given in an earlier

report(1). The questions that the computation was designed to answer were:

(1) What is the effect of the quadratic coupling on the stabilization of the

system (i. e., on the lowering of the ground state energy compared to the

energy of an uncoupled system)?

(2) Is any analytic expression suggested by the results?

(3) What is the nature of the splitting of the lowest pair, which is degenerate

in the linear effect (1=0) ? In particular,

(4) What is the balance of the effects on the upper of the pair of the upward
tendency of the splitting and of the downward tendency of stabilization, and

(5) Where does this level meet the second harmonic ?

Figures 1-4 provide the answer. It is important to note that the
figures are plotted as though curves with different I's coincided in k=0. This1
is not the case, since the z~ro-point motion energies are 1 (,- + 4 ) for

k=0. This slowly varying quantity should then be added to the value of the

curve to obtain the energy.

Regarding question (2), the plotted stabilized energy can be
1 2krepresented by -k / (1-1) + 0 (1) for large k and any 1. No simple expression
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was found for the upper of the pair in this limit. However, an analytic, exact

expression was derived by second-order perturbation theory and valid up to the
2

order of k (for small k) and any I for both of the pair. The expression is in-

volved. For I small it reduces to -k / (1-1) for the lower of the pair and

-k / (1+1) for the upper (I>0).

Figure 4 is purported to answer (5). Our method applies only to the

ground-state pair and cannot give the level of the second harmonic. However,

we have reacon to expect that the separation of this level from the lowest one

varies only weakly with k, I and can be taken as 1.

The table gives numerical results for comparison with future

computations. Our computations were carried out on the IBM 709 by means of

numerical quadrature of complicated formulae. Characteristically, a thousand

values were computed on a rectangular mesh, a pair of energies was obtained

in 2 minutes.

The importarnce of this work may be seen by the light of the fact that

after the initial impetus of the Jahn-Teller effect in 1957-8, progress has

slowed down and, in terms of exact results, virtually halted, ostensibly

because of the difficu-i÷j, in obtaining exact solution. Regarding the reliability

of our results, based as they are on approximate formulae, we are confident

that they reproduce faithfully any qualitative aspect and suffice, at this stage,

for comparison with tho experiments that one would think of.

We are thankful to Professor W. Thorson for directing our attention

to this work.

Table 1

Numerical Level Heights for I = 0. 5

k= 0.3 0.5 1.0 2.0

Upper -0.009714 -0. Z27310 +0. 71908 +16.4301

Lower -0.108763 -0.301881 -1.12986 -4.1443
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Figure 1

Energy vs. k (the linear coupling strength) with I (the quadratic coupling
strength) as parameters. The drooping curves are the ground-state
energies; the rising ones belong to the upper of the ground-state pair.

(Note the sliding zero of the ordinate. Add 1(NTh+T-+ T=--T) to obtain energy.)
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Figure 2

Enlargement of Figure I for small k
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Figure 3

Energy vs. I with k as parameters
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Figure 4

The value of k such that the splitting of the ground-state pair levels is 1,
plotted vs. 1. At the plotted points (I, k) the upper level coincides approxi-
mately with the second harmonic of the ground state.


